Exponentiell Gleitender Durchschnitt Postgresql
Ich habe die Diskussion gelesen, die Sie erwähnt haben. Es ist auf PostgreSQL anwendbar, da es erlaubt ist, benutzerdefinierte Aggregatfunktion zu erstellen, die SQL in PostgreSQL verwendet, aber in SQL Server nicht zulässig ist. Die Verwendung von rekursiven CTE ist ein möglicher Weg in SQL Server, aber ich merke, dass CTE-Wege möglicherweise mehr Tabellen-Scan als Fenster-Funktionen. So mache ich diesen Beitrag zu fragen, ob es möglich ist, zu berechnen exponentiellen gleitenden Durchschnitt mit SQL Server 2012 Fensterfunktion genau wie die Berechnung einfach gleitenden Durchschnitt. Ndash xiagao1982 Apr 14 13 at 2:53 Zuerst berechnen Sie die EMA (SMA (x)) anstelle der EMA (x). Zweitens ist Ihre quotsmoothing constantquot eigentlich der Beta-Wert in meiner Formel, nicht die alpha. Mit diesen beiden Änderungen sieht das SQLFiddle wie folgt aus: sqlfiddle6191921 Es gibt jedoch noch einen kleinen Unterschied zwischen dem tatsächlichen Ergebnis und dem erwarteten Ergebnis. Ich würde zurückgehen und sehen, ob ihre EMA-Definition entspricht der, die ich kenne. Ndash Sebastian Meine 7 Mai, um 13:46 Ich schaute nur auf das Formular in der Kalkulationstabelle Sie angebracht und es ist weit weg von der Standard-EMA-Definition. Meine Formel berechnet den exponentiellen gleitenden Durchschnitt der letzten zehn Zeilen. Die Kalkulationstabelle berechnet zuerst den Standardmittelwert über die letzten zehn Zeilen und dann den unbeschränkten exponentiell gewichteten gleitenden Durchschnitt über alle Mittelwerte. Dies folgt der formular hier: en. wikipedia. orgwikiEWMAchart ndash Sebastian Meine 7. Mai 13 bei 13: 52Im versuchen, einen exponentiellen gleitenden Durchschnitt (EMA) auf Postgres zu implementieren, aber als ich die Dokumentation prüfen und darüber nachdenken, es desto mehr ich versuche, die mehr verwirrt Ich bin. Die Formel für EMA (x) ist: Es scheint für einen Aggregator perfekt zu sein, wobei das Ergebnis des zuletzt berechneten Elements genau das ist, was hier zu tun ist. Allerdings erzeugt ein Aggregator ein einziges Ergebnis (wie reduzieren oder falten) und hier benötigen wir eine Liste (eine Spalte) der Ergebnisse (als Karte). Ich habe überprüft, wie Verfahren und Funktionen funktionieren, aber AFAIK sie produzieren eine einzige Ausgabe, nicht eine Spalte. Ich habe viele Verfahren und Funktionen gesehen, aber ich kann nicht wirklich herausfinden, wie diese Interaktion mit relationalen Algebra, vor allem, wenn so etwas wie eine EMA. Ich habe nicht viel Glück auf der Suche nach der Internets so weit. Aber die Definition für eine EMA ist ganz einfach, ich hoffe, dass es möglich ist, diese Definition in etwas zu übersetzen, das in postgres funktioniert und einfach und effizient ist, denn der Umzug nach NoSQL wird in meinem Kontext übertrieben. Ist dies die Berechnung der Aggregation, die das Ergebnis in jeder Zeile für jede Unterliste der Eingabedaten erzeugt, da es aussieht wie es mit dem Aggregator bis Zeile n, das Ergebnis zurückgeben und dann auf Zeile 0, um die Aggregation bis Zeile n1 berechnen aufs Neue. Gibt es eine Möglichkeit, die Akkumulation oder eine statische Variable (wie in C), so dass diese einmal berechnet werden muss Danke. Ndash Trylks Jan 20 12 at 11:59 Nein, it39s mit dem akkumulierten Wert. Wenn Sie die Abfrage mit dem Befehl quotraise infoquot unkommentiert ausführen, können Sie sehen, dass die Funktion nur einmal für jede Zeilenausgabe aufgerufen wird. Postgresql gibt den Statuswert für jede Zeile aus (wenn ein finalfunc definiert wurde, der aufgerufen werden würde, um den Zustand in einen Ausgangswert umzuwandeln). ndash araqnid 20. Januar 12 um 12:04 ErwinBrandstetter: Ich habe die meisten Änderungen rückgängig gemacht - im Fall des Formats des ersten (Anker) Teil der Abfrage, EMA (x1) eindeutig mit einer einzigen Zeile dargestellt werden - dies Corespnds zu der einzigen Zeile, die es in der Frage definiert. Im Fall des rekursiven Teils der Abfrage habe ich in der Join-Bedingung mn-1 verwendet, um die Äquivalenz der Beziehung zu EMA (xn-1) in der Frage anzuzeigen, auch wenn dies weniger performant ist, wenn die Performance eine ist Problem kann die OP die Join-Bedingung ändern, wie Sie vorgeschlagen haben. Ndash Mark Bannister Jan 16 12 um 9: 27Exponential Moving Average - EMA BREAKING DOWN Exponential Moving Average - EMA Die 12- und 26-Tage-EMAs sind die beliebtesten Kurzzeitmittelwerte und werden verwendet, um Indikatoren wie die gleitende durchschnittliche Konvergenz zu erzeugen Divergenz (MACD) und dem prozentualen Preisoszillator (PPO). Im Allgemeinen werden die 50- und 200-Tage-EMAs als Signale von langfristigen Trends verwendet. Trader, die technische Analyse verwenden finden fließende Mittelwerte sehr nützlich und aufschlussreich, wenn sie richtig angewendet werden, aber Chaos verursachen, wenn sie falsch verwendet werden oder falsch interpretiert werden. Alle gleitenden Mittelwerte, die gewöhnlich in der technischen Analyse verwendet werden, sind von Natur aus nacheilende Indikatoren. Folglich sollten die Schlussfolgerungen aus der Anwendung eines gleitenden Durchschnitts auf ein bestimmtes Marktdiagramm eine Marktbewegung bestätigen oder ihre Stärke belegen. Sehr oft, bis eine gleitende durchschnittliche Indikatorlinie eine Änderung vorgenommen hat, um eine bedeutende Bewegung auf dem Markt zu reflektieren, ist der optimale Punkt des Markteintritts bereits vergangen. Eine EMA dient dazu, dieses Dilemma zu einem gewissen Grad zu lindern. Da die EMA-Berechnung mehr Gewicht auf die neuesten Daten setzt, umgibt sie die Preisaktion etwas fester und reagiert damit schneller. Dies ist wünschenswert, wenn ein EMA verwendet wird, um ein Handelseintragungssignal abzuleiten. Interpretation der EMA Wie alle gleitenden Durchschnittsindikatoren sind sie für Trendmärkte viel besser geeignet. Wenn der Markt in einem starken und anhaltenden Aufwärtstrend ist. Zeigt die EMA-Indikatorlinie auch einen Aufwärtstrend und umgekehrt einen Abwärtstrend. Ein wachsamer Händler achtet nicht nur auf die Richtung der EMA-Linie, sondern auch auf das Verhältnis der Änderungsgeschwindigkeit von einem Balken zum nächsten. Wenn zum Beispiel die Preisaktion eines starken Aufwärtstrends beginnt, sich zu verflachen und umzukehren, wird die EMA-Rate der Änderung von einem Balken zum nächsten abnehmen, bis zu dem Zeitpunkt, zu dem die Indikatorlinie flacht und die Änderungsrate null ist. Wegen der nacheilenden Wirkung, von diesem Punkt, oder sogar ein paar Takte zuvor, sollte die Preisaktion bereits umgekehrt haben. Daraus folgt, dass die Beobachtung einer konsequenten Abschwächung der Veränderungsrate der EMA selbst als Indikator genutzt werden könnte, der das Dilemma, das durch den nacheilenden Effekt von gleitenden Durchschnitten verursacht wird, weiter beheben könnte. Gemeinsame Verwendung der EMA-EMAs werden häufig in Verbindung mit anderen Indikatoren verwendet, um signifikante Marktbewegungen zu bestätigen und deren Gültigkeit zu messen. Für Händler, die intraday und schnelllebigen Märkten handeln, ist die EMA mehr anwendbar. Häufig benutzen Händler EMAs, um eine Handel Bias zu bestimmen. Zum Beispiel, wenn eine EMA auf einem Tages-Chart zeigt einen starken Aufwärtstrend, eine Intraday-Trader-Strategie kann nur von der langen Seite auf einem Intraday-Diagramm handeln.
Comments
Post a Comment